
Shortest Path with Negative 
Weights

The Bellman-Ford Algorithm



Question: What is the shortest path from A to C?
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A. A -> B -> C
B. A -> D -> B -> C
C. A -> D -> B -> C -> D -> B -> C
D. There is no shortest path because there is a 

cycle.



Answer B:  A->D->B->C  which has total weight 2



Different weights. Now what is the shortest path 
from A to C?
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A. A -> B -> C
B. A -> D -> B -> C
C. A -> D -> B -> C -> D -> B -> C
D. There is no shortest path because there is a 

cycle.



Actually, none of these are quite correct. It is true 
that there is no shortest path, but as the previous 
example shows, just having a cycle doesn’t by itself 
prevent there from being shortest paths.



What is the difference?
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Sometimes we want to find the shortest paths in a 
graph where the edges have weights that aren't 
necessarily positive.  For example, suppose you are 
investing in currency exchange market.  National 
currencies are sometimes overvalued or undervalued, 
so that if you use US dollars to buy British pounds, 
which you then sell for euros and use the euros to buy 
Japanese yen, you might find that the yen are worth 
more or less than the dollars you started with.  You 
could model this with a graph whose nodes represent 
nations and whose edges represent the percentage 
gain or loss of transferring one currency for another.  
The cheapest path from one node to another 
represents the cheapest way to transform one 
currency into another.



Note that once we introduce negative edge 
weights, there might not be cheapest paths.  
Consider the following graph:
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There is a direct path from A to B of cost 5.  
However, the route A -> B -> C -> D -> B only has 
cost 4.  If we go
A -> B -> C -> D -> B -> C -> D -> B the cost is only 3.  
If we went around the cycle 100 times the cost 
would be -95.  It should be clear that there is no 
cheapest path from A to B; we can get a path as 
cheap as we wish by simply going around the cycle 
often enough.
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Our other shortest path algorithms 
(unweighted, non-negative weights) were not 
bothered by cycles.  Cycles themselves are not 
the problem here.  In the following graph
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the cheapest path from A to B has cost 5, from A to 
C has cost 6 and from A to D has cost 8.  Problems 
occur if the weights on the edges of a cycle sum to a 
negative number.  Such a "negative-cost cycle" 
prevents there from being minimum cost paths.



Our first two algorithms for finding shortest 
paths were based on the fact that when we 
pulled a node out of our data structure (a queue 
for the unweighted problem, a priority queue for 
the positive-weights problem) we knew the 
shortest path to it.  That doesn't apply here, 
since there might be an unexplored node with an 
edge back to our node that has a large negative 
cost.  We can't know the shortest path to 
anything without exploring all edges in the 
graph.  
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For example, consider this graph with A as the 
source:

You might initially think the cheapest path to B is 
A =>  B, which costs 2, but there is a cheaper path of 
cost 1:  A => C => D => E => B



We return to our queue data structure, which 
explores nodes based on the number of edges 
in their path from the source.  Let X be the 
node at the head of the queue.  When we 
remove X from the queue we know the 
cheapest path to it so far.   



What does this mean?  We first put into the 
queue all of the nodes with a path of length 1 (i.e, 
1 edge).  As we take these out we add behind 
them nodes with a path of length 2, behind these 
we add nodes with a path of length 3, and so 
forth.  We could keep track of the number of 
edges on the path that its current cost represents.  
Each time we add a node to the queue the length 
of the best path to it is one more than the length 
of the best path to its predecessor.



For each of the nodes pointed to by X we can 
calculate a new cost: the cost of the path to X 
plus the cost of the edge from X to this node.  If 
this is cheaper than the previous cost of the 
node, we update its cost to this and add it to the 
queue. If the queue ever empties out, that 
means there are no unexplored cheaper paths 
and we must have found all of the minimum cost 
paths.  The queue won't empty out if there is a 
negative-cost cycle.  



How can we detect a negative-cost cycle?  
Nodes will be added to the queue over and 
over.  Consider the following graph:
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Here node A is added to the queue once for 
each other node in the graph.  



Now suppose the graph has n nodes and there is 
a path to node X with n edges that is cheaper 
than any shorter path.  If the graph has n nodes 
and this path has n edges (and so n+1 nodes), 
this means there is a repeated node, which 
means there is a cycle in the path.  If the n-edge 
path is cheaper than the same path without the 
cycle, this must be a negative-cost cycle.  So if 
this ever happens, there is no solution to the 
shortest path problem.
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Here’s an example.  We will use A as the source 
node.  For each step we will list the current state of 
the queue.  We will give a second list with all of the 
nodes, the weight of the best path to them, their 
predecessor on this path, and the number of edges 
on this path.
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Queue: [A]

(A, 0, null, 0)
(B, INF, null, INF)
(C, INF, null, INF)
(D, INF, null, INF)
(E, INF, null, INF)
(F, INF, null, INF)
(G, INF, null, INF)

We start by removing A from the queue and 
adding its children B and F, updating their 
properties
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Queue: [B, F]

(A, 0, null, 0)
(B, 4, A, 1)
(C, INF, null, INF)
(D, INF, null, INF)
(E, INF, null, INF)
(F, 5, A, 1)
(G, INF, null, INF)

Next we remove B, which is connected to C and D
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Queue: [F, C, D]

(A, 0, null, 0)
(B, 4, A, 1)
(C, 6, B, 2)
(D, 7, B, 2)
(E, INF, null, INF)
(F, 5, A, 1)
(G, INF, null, INF)

We remove F from the queue; it is connected only 
to B and we have a cheaper path to B, so no 
updates are needed.
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Queue: [C, D]

(A, 0, null, 0)
(B, 4, A, 1)
(C, 6, B, 2)
(D, 7, B, 2)
(E, INF, null, INF)
(F, 5, A, 1)
(G, INF, null, INF)

We remove C from the queue; it is connected to D 
but we have a cheaper path.  C is also connected 
to E.
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Queue: [D, E]

(A, 0, null, 0)
(B, 4, A, 1)
(C, 6, B, 2)
(D, 7, B, 2)
(E, 16, C, 3)
(F, 5, A, 1)
(G, INF, null, INF)

D give us bad connections to A and F, an improved 
connection to E (which we need to add to the 
queue again) and a new connection to G
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Queue: [E, E, G]

(A, 0, null, 0)
(B, 4, A, 1)
(C, 6, B, 2)
(D, 7, B, 2)
(E, -3, D, 3)
(F, 5, A, 1)
(G, 11, D, 3)

E gives us a better path to G, which we add to the 
queue again.  Note that nothing changes when we 
remove the second E from the queue .
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Queue: [G, G]

(A, 0, null, 0)
(B, 4, A, 1)
(C, 6, B, 2)
(D, 7, B, 2)
(E, -3, D, 3)
(F, 5, A, 1)
(G, -2, E, 4)

G gives us a better path to F.
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Queue: [F]

(A, 0, null, 0)
(B, 4, A, 1)
(C, 6, B, 2)
(D, 7, B, 2)
(E, -3, D, 3)
(F, 3, G, 5)
(G, -2, E, 4)

F does not give us a better path to B, so this step 
ends with the queue empty and we halt.
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Queue: [ ]

(A, 0, null, 0)
(B, 4, A, 1)
(C, 6, B, 2)
(D, 7, B, 2)
(E, -3, D, 3)
(F, 3, G, 5)
(G, -2, E, 4)

Notice what would happen if the edge from F to B 
had weight 0.  This would give us a new cheaper 
path to B of length 3 and we would keep going.  
The negative weight cycle B->D->E->G->F->B  
would keep going around until we found a path 
longer than the 7 nodes of the graph.



How long does this take?

We must add each vertex to the queue at most 
|V| times, because each time we add it the 
number of edges on the best path to it  
increases.  Each time we remove a vertex from 
the queue we potentially walk along all of the 
edges of the graph.  so O( |E| |V| ) is our 
estimate.  For most graphs 
|V| < |E| < |V|2, so this gives an estimate 
between O(|V|2)) and O( |V|3 ).



Our estimate for finding shortest paths for a graph 
with non-negative weights was O( |E| log(|E|)  ).  
Think about the difference between O( |E| |V| ) 
and O( |E|log(|E|) ) as the price of using negative 
weights.



In lab 9 we build some enormous graphs using 
IMDB data about movies and actors.  A graph 
with 10,000 nodes and 100,000 edges is easy 
to construct.  Here |E||V| is  109.   |E|log(|V|) 
is 5*105 (using base-10 logs). The shortest 
path algorithm with positive weights runs 
faster by a factor of about 2000.   This means 
that if finding shortest paths with positive 
weights takes 30 seconds, finding them with 
negative weights might take 16 hours. Of 
course, sometimes you can't avoid the 
negative weights and being slow might be 
better than not solving the problem at all.


