
Shortest Path with Negative
Weights

The Bellman-Ford Algorithm

Question: What is the shortest path from A to C?

A

B C

D

5

2

2

-2

3

A. A -> B -> C
B. A -> D -> B -> C
C. A -> D -> B -> C -> D -> B -> C
D. There is no shortest path because there is a

cycle.

Answer B: A->D->B->C which has total weight 2

Different weights. Now what is the shortest path
from A to C?

A

B C

D

5

2

-2

-2

3

A. A -> B -> C
B. A -> D -> B -> C
C. A -> D -> B -> C -> D -> B -> C
D. There is no shortest path because there is a

cycle.

Actually, none of these are quite correct. It is true
that there is no shortest path, but as the previous
example shows, just having a cycle doesn’t by itself
prevent there from being shortest paths.

What is the difference?

A

B C

D

5

2

2

-2

3

A

B C

D

5

2

-2

-2

3

Shortest paths

No shortest
paths

Sometimes we want to find the shortest paths in a
graph where the edges have weights that aren't
necessarily positive. For example, suppose you are
investing in currency exchange market. National
currencies are sometimes overvalued or undervalued,
so that if you use US dollars to buy British pounds,
which you then sell for euros and use the euros to buy
Japanese yen, you might find that the yen are worth
more or less than the dollars you started with. You
could model this with a graph whose nodes represent
nations and whose edges represent the percentage
gain or loss of transferring one currency for another.
The cheapest path from one node to another
represents the cheapest way to transform one
currency into another.

Note that once we introduce negative edge
weights, there might not be cheapest paths.
Consider the following graph:

A

B

C

D
5

-4

1

2

There is a direct path from A to B of cost 5.
However, the route A -> B -> C -> D -> B only has
cost 4. If we go
A -> B -> C -> D -> B -> C -> D -> B the cost is only 3.
If we went around the cycle 100 times the cost
would be -95. It should be clear that there is no
cheapest path from A to B; we can get a path as
cheap as we wish by simply going around the cycle
often enough.

A

B

C

D
5

-4

1

2

Our other shortest path algorithms
(unweighted, non-negative weights) were not
bothered by cycles. Cycles themselves are not
the problem here. In the following graph

A

B

C

D
5

-2

1

2

the cheapest path from A to B has cost 5, from A to
C has cost 6 and from A to D has cost 8. Problems
occur if the weights on the edges of a cycle sum to a
negative number. Such a "negative-cost cycle"
prevents there from being minimum cost paths.

Our first two algorithms for finding shortest
paths were based on the fact that when we
pulled a node out of our data structure (a queue
for the unweighted problem, a priority queue for
the positive-weights problem) we knew the
shortest path to it. That doesn't apply here,
since there might be an unexplored node with an
edge back to our node that has a large negative
cost. We can't know the shortest path to
anything without exploring all edges in the
graph.

A

B

C D

2

10
10

E

10

-29

For example, consider this graph with A as the
source:

You might initially think the cheapest path to B is
A => B, which costs 2, but there is a cheaper path of
cost 1: A => C => D => E => B

We return to our queue data structure, which
explores nodes based on the number of edges
in their path from the source. Let X be the
node at the head of the queue. When we
remove X from the queue we know the
cheapest path to it so far.

What does this mean? We first put into the
queue all of the nodes with a path of length 1 (i.e,
1 edge). As we take these out we add behind
them nodes with a path of length 2, behind these
we add nodes with a path of length 3, and so
forth. We could keep track of the number of
edges on the path that its current cost represents.
Each time we add a node to the queue the length
of the best path to it is one more than the length
of the best path to its predecessor.

For each of the nodes pointed to by X we can
calculate a new cost: the cost of the path to X
plus the cost of the edge from X to this node. If
this is cheaper than the previous cost of the
node, we update its cost to this and add it to the
queue. If the queue ever empties out, that
means there are no unexplored cheaper paths
and we must have found all of the minimum cost
paths. The queue won't empty out if there is a
negative-cost cycle.

How can we detect a negative-cost cycle?
Nodes will be added to the queue over and
over. Consider the following graph:

S

A

B C

D

E
10

10

-1

-1

-1
-1

-1
-1

-1

Here node A is added to the queue once for
each other node in the graph.

Now suppose the graph has n nodes and there is
a path to node X with n edges that is cheaper
than any shorter path. If the graph has n nodes
and this path has n edges (and so n+1 nodes),
this means there is a repeated node, which
means there is a cycle in the path. If the n-edge
path is cheaper than the same path without the
cycle, this must be a negative-cost cycle. So if
this ever happens, there is no solution to the
shortest path problem.

A

B C

D E

F G

4

2

103 3

2

5 8

5

4

-10

1

2

Here’s an example. We will use A as the source
node. For each step we will list the current state of
the queue. We will give a second list with all of the
nodes, the weight of the best path to them, their
predecessor on this path, and the number of edges
on this path.

A

B C

D E

F G

4

2

103 3

2

5 8

5

4

-10

1

2

Queue: [A]

(A, 0, null, 0)
(B, INF, null, INF)
(C, INF, null, INF)
(D, INF, null, INF)
(E, INF, null, INF)
(F, INF, null, INF)
(G, INF, null, INF)

We start by removing A from the queue and
adding its children B and F, updating their
properties

A

B C

D E

F G

4

2

103 3

2

5 8

5

4

-10

1

2

Queue: [B, F]

(A, 0, null, 0)
(B, 4, A, 1)
(C, INF, null, INF)
(D, INF, null, INF)
(E, INF, null, INF)
(F, 5, A, 1)
(G, INF, null, INF)

Next we remove B, which is connected to C and D

A

B C

D E

F G

4

2

103 3

2

5 8

5

4

-10

1

2

Queue: [F, C, D]

(A, 0, null, 0)
(B, 4, A, 1)
(C, 6, B, 2)
(D, 7, B, 2)
(E, INF, null, INF)
(F, 5, A, 1)
(G, INF, null, INF)

We remove F from the queue; it is connected only
to B and we have a cheaper path to B, so no
updates are needed.

A

B C

D E

F G

4

2

103 3

2

5 8

5

4

-10

1

2

Queue: [C, D]

(A, 0, null, 0)
(B, 4, A, 1)
(C, 6, B, 2)
(D, 7, B, 2)
(E, INF, null, INF)
(F, 5, A, 1)
(G, INF, null, INF)

We remove C from the queue; it is connected to D
but we have a cheaper path. C is also connected
to E.

A

B C

D E

F G

4

2

103 3

2

5 8

5

4

-10

1

2

Queue: [D, E]

(A, 0, null, 0)
(B, 4, A, 1)
(C, 6, B, 2)
(D, 7, B, 2)
(E, 16, C, 3)
(F, 5, A, 1)
(G, INF, null, INF)

D give us bad connections to A and F, an improved
connection to E (which we need to add to the
queue again) and a new connection to G

A

B C

D E

F G

4

2

103 3

2

5 8

5

4

-10

1

2

Queue: [E, E, G]

(A, 0, null, 0)
(B, 4, A, 1)
(C, 6, B, 2)
(D, 7, B, 2)
(E, -3, D, 3)
(F, 5, A, 1)
(G, 11, D, 3)

E gives us a better path to G, which we add to the
queue again. Note that nothing changes when we
remove the second E from the queue .

A

B C

D E

F G

4

2

103 3

2

5 8

5

4

-10

1

2

Queue: [G, G]

(A, 0, null, 0)
(B, 4, A, 1)
(C, 6, B, 2)
(D, 7, B, 2)
(E, -3, D, 3)
(F, 5, A, 1)
(G, -2, E, 4)

G gives us a better path to F.

A

B C

D E

F G

4

2

103 3

2

5 8

5

4

-10

1

2

Queue: [F]

(A, 0, null, 0)
(B, 4, A, 1)
(C, 6, B, 2)
(D, 7, B, 2)
(E, -3, D, 3)
(F, 3, G, 5)
(G, -2, E, 4)

F does not give us a better path to B, so this step
ends with the queue empty and we halt.

A

B C

D E

F G

4

2

103 3

2

5 8

5

4

-10

1

2

Queue: []

(A, 0, null, 0)
(B, 4, A, 1)
(C, 6, B, 2)
(D, 7, B, 2)
(E, -3, D, 3)
(F, 3, G, 5)
(G, -2, E, 4)

Notice what would happen if the edge from F to B
had weight 0. This would give us a new cheaper
path to B of length 3 and we would keep going.
The negative weight cycle B->D->E->G->F->B
would keep going around until we found a path
longer than the 7 nodes of the graph.

How long does this take?

We must add each vertex to the queue at most
|V| times, because each time we add it the
number of edges on the best path to it
increases. Each time we remove a vertex from
the queue we potentially walk along all of the
edges of the graph. so O(|E| |V|) is our
estimate. For most graphs
|V| < |E| < |V|2, so this gives an estimate
between O(|V|2)) and O(|V|3).

Our estimate for finding shortest paths for a graph
with non-negative weights was O(|E| log(|E|)).
Think about the difference between O(|E| |V|)
and O(|E|log(|E|)) as the price of using negative
weights.

In lab 9 we build some enormous graphs using
IMDB data about movies and actors. A graph
with 10,000 nodes and 100,000 edges is easy
to construct. Here |E||V| is 109. |E|log(|V|)
is 5*105 (using base-10 logs). The shortest
path algorithm with positive weights runs
faster by a factor of about 2000. This means
that if finding shortest paths with positive
weights takes 30 seconds, finding them with
negative weights might take 16 hours. Of
course, sometimes you can't avoid the
negative weights and being slow might be
better than not solving the problem at all.

